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Abstract: Relationships between the absorption and backscattering coefficients of marine
optical constituents and ocean color, or remote sensing reflectances Rrs(λ), can be used to predict
the concentrations of these constituents in the upper water column. Standard inverse modeling
techniques that minimize error between the modeled and observed Rrs(λ) break down when
the number of products retrieved becomes similar to, or greater than, the number of different
ocean color wavelengths measured. Furthermore, most conventional ocean reflectance inversion
approaches, such as the default configuration of NASA’s Generalized Inherent Optical Properties
algorithm framework (GIOP-DC), require a priori definitions of absorption and backscattering
spectral shapes. A Bayesian approach to GIOP is implemented here to address these limitations,
where the retrieval algorithm minimizes both the error in retrieved ocean color and the deviation
from prior knowledge, calculated using output from a mixture of empirically-derived and best-fit
values. The Bayesian approach offers potential to produce an expanded range of parameters
related to the spectral shape of absorption and backscattering spectra.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The color of the ocean reflects the concentration and quality of optical constituents in the upper
ocean [1]. Empirical algorithms have been developed and are widely used to provide estimates
of the near-surface concentration of chlorophyll-a [2,3], particulate organic carbon [4], and
particulate inorganic carbon [5,6], among others, from spectral remote sensing reflectances, Rrs(λ)
(sr−1), or the ratio of upwelling radiance to downward solar irradiance at various wavelengths λ
(nm). These formulae exploit observed wavelength-dependencies in the absorption or scattering
of light from these compounds; for example, that chlorophyll-a absorbs light more strongly in blue
wavelengths than in green in such a manner that the ratio of blue-to-green reflectances can be used
to predict chlorophyll-a concentrations. However, the functional form of empirical algorithms
and the coefficients that translate Rrs(λ) into concentrations of upper ocean constituents are
simply statistical relationships determined by fitting to data [7].

Semi-analytical algorithms (SAAs) provide an alternative approach to utilizing Rrs(λ) informa-
tion through assumptions of prior knowledge of the complete spectral shapes of absorption (a(λ),
m−1) and backscattering (bb(λ), m−1) from different optical constituents. Spectral matching type
SAA algorithms typically comprise three components: (i) spectral shapes of the inherent optical
properties (IOPs; a(λ) and bb(λ)), (ii) a forward reflectance model, and (iii) an inverse solution
method. The sums of a(λ) and bb(λ) from different constituents provide the total absorption
and backscattering, atot(λ) and bb,tot(λ), which are IOPs that relate directly to Rrs(λ) through
simplifications to the radiative transfer equation. Options to configure such an SAA are broadly
available through the Generalized IOP framework (GIOP) [8], which is also summarized below.
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The GIOP algorithm in its default configuration (GIOP-DC) provides a best-fit result, minimiz-
ing the error in calculated to observed Rrs(λ) by assigning spectral shapes and varying magnitude
parameters controlling the absorption by phytoplankton (aph(λref ), m−1), absorption by detritus
and colored dissolved organic material (CDOM), also known as “gelbstoff” (adg(λref ), m−1),
and backscattering of particulates (bbp(λref ), m−1) at reference wavelengths λref . In this form,
the three GIOP retrievals are the amplitudes for each term that combine to best recreate the
input Rrs(λ). The need to pre-define spectral shapes, however, remains a limitation, as such
assignments cannot universally and accurately represent all aquatic conditions at all times. For
example, photodegradation of CDOM by ultraviolet light alters its spectral slope and results in
a loss of absorption preferentially at longer wavelengths [9] as CDOM is modified into lower
molecular weight molecules [10]. Similarly, the backscattering spectral slope of particulates is
related to the particle size distribution [11,12] and varies widely with phytoplankton community
composition and physiological state [13–15].

In practice, most SAAs pre-define a spectrum for aph(λ) and spectral slopes for adg(λ) and
bbp(λ), which are typically expressed as an exponential and a power-law, respectively [16].
Given the importance of understanding the spectral shapes of CDOM absorption and particulate
backscattering, the spectral shape of these IOPs would ideally be varied and fit the same as
the magnitude parameters that are in the inversion algorithm. However, SAAs such as GIOP
are typically applied to satellite measurements with only 5–7 wavelengths. This introduces
challenges when the number of fitted parameters is similar to the number of wavelengths [17],
and indeed when all five parameters — three related to magnitude and two related to shape —
are fit by GIOP, the results need to be tightly bound to a narrow dynamic range lest they become
unrealistic.

The Bayesian approach [18,19] provides a methodology to overcome these challenges. In this
framework, prior distributions for each of the fitted parameters are defined, and the algorithm
minimizes the sum of the deviations between calculated and observed Rrs(λ) and between the
prior and best-fit parameters. In other words, the model will deviate from the best-guess prior
solution only to the extent that such a deviation results in a commensurate decrease in model error.
The GIOP model (Section 2) is augmented with this Bayesian approach (Section 3) and applied
to both a reference in situ dataset and a satellite scene (Section 4). Bayesian-GIOP performs
better on retrieving shape and magnitude parameters than a 5-variable GIOP fit, and equally well
to a standard 3-variable fit, while greatly expanding the predicted variability in these parameters
at smaller scales (Section 5). With the current and upcoming development of hyperspectral ocean
color satellites, use of a Bayesian implementation in inversion algorithms such as GIOP will
become more important to set realistic but flexible constraints on IOP ranges (Section 6).

2. GIOP model

SAAs such as GIOP exploit a simplified expression of the radiative transfer equation to invert
measured Rrs(λ) into corresponding estimates of absorption and backscattering coefficients. This
simplification is expressed via a forward model that describes the relationships between the
desired IOPs and observed Rrs(λ) [8]. Total absorption atot(λ) is the sum of absorption from
seawater (aw(λ); m−1), phytoplankton, and detritus/gelbstoff:

atot(λ) = aw(λ) + aph(443)a∗ph(λ) + adg(443)a∗dg(λ) (1)

where aw(λ) is known [20] and the absorptions of phytoplankton, aph(λ) (m−1), and detri-
tus/gelbstoff, adg(λ) (m−1), are represented as a magnitude at a reference wavelength of 443 nm
and dimensionless spectral shapes. In its default form, GIOP prescribes a dynamically-assigned
spectral shape to a∗ph(λ) from Ref. [21] and to a∗dg(λ) as [21]

a∗dg = eSdg(λ−443), (2)
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where Sdg is an exponential slope (nm−1) [22]. Other methods to assign a∗ph(λ) (Refs. [23]
and [24]) were also tested, but did not change any of the conclusions of this manuscript. Total
backscatter is the sum of backscatter from seawater (bbw(λ); m−1) and particulates:

bb,tot(λ) = bbw(λ) + bbp(555)b∗bp(λ), (3)

where bbw(λ) is known [25] and the phytoplankton/detrital backscattering is similarly separated
into a magnitude at a reference wavelength, commonly 555 nm, and a dimensionless power-law
controlled by the slope factor η (e.g., Ref. [26]):

b∗bp(λ) =

(︃
λ

555

)︃η
. (4)

Spectrally-resolved atot and bb,tot relate to sub-surface reflectances rrs(λ) (sr−1) as:

u(λ) =
bb,tot(λ)

atot(λ) + bb,tot(λ)
(5a)

rrs(λ) = g1u(λ) + g2u(λ)2, (5b)

with commonly assigned values g1 = 0.0949 and g2 = 0.0794 [27]. The resulting water-leaving
reflectance Rrs(λ) is then approximated as [28]:

Rrs(λ) =
0.52rrs(λ)

1 − 1.7rrs(λ)
. (6)

In this form, the GIOP forward model includes six unknown parameters. Three are magnitude
quantities encompassing absorption from phytoplankton (aph(443)), absorption from detritus
and gelbstoff (adg(443)), and backscattering from particulates (bbp(555)). Two are single shape
parameters controlling the variation with wavelength of gelbstoff and detrital absorption (Sdg)
and particulate backscatter (η). The last is chlorophyll-a, which is used to dynamically assign
the spectral shape a∗ph(λ) using Ref. [21]. Heritage SAAs, such as GIOP-DC, do not attempt
to fit a solution for the shape parameters, but instead define them either dynamically or via
constant values. GIOP-DC and Ref. [23] assign constant values of 0.018 and 0.02061 nm−1 to
Sdg, respectively. An alternative dynamic approach [28], used here, is to define:

Sdg = 0.015 + 0.002 (0.6 + rrs(443)/rrs(555))−1 . (7)

GIOP-DC dynamically assigns η as [28]:

η = 2 ×

(︂
1 − 1.2e−0.9rrs(443)/rrs(555)

)︂
, (8)

with rrs(λ) calculated from the observed Rrs(λ) as in Eq. (6), although constant values for η are
also commonly chosen (e.g. Reference [23]).

Once spectral shapes are assigned in the forward model framework described above, only
the magnitudes remain unknown. An inverse solution is then sought where, for each observed
Rrs(λ), the three magnitude parameters are then varied to produce a best-fit Rrs(λ) using standard
minimization techniques, such as Levenberg-Marquardt, that minimizes relative error, expressed
as a fraction of expected variance due to measurement uncertainty (σRrs(λ)

2) [8]:

χ2
rel =

∑︂ (︁
Rrs,calc.(λ) − Rrs,obs.(λ)

)︁2

σRrs(λ)2
. (9)

The above approach presents an over-constrained solution space, where five or more Rrs(λ) are
typically used to retrieve estimates of three IOPs, namely aph(443), adg(443), and bbp(555).
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3. Bayesian-GIOP

The Bayesian approach utilizes priors, and probability distributions about those priors, as an
additional metric to control the fitting of parameters [18,19]. The narrowness or broadness of
each probability distribution sets the allowable range of each parameter to be fit. Any best-fit
algorithm can be framed in a Bayesian sense; for example, most standard best-fit algorithms,
such as the approach presented in Section 2, are Bayesian where each fitted parameter has a
maximally uninformative prior ranging from [−∞,+∞]. A standard bounded algorithm can also
be understood as Bayesian, where the prior likelihood for each parameter is constant within the
bounded region and zero elsewhere. In most applications, however, Bayesian priors are smoothly
distributed functions, the most common and general of which is a Gaussian distribution.

The only addition necessary to make an algorithm “Bayesian” is to incorporate the prior
distributions into the function to be minimized. When these distributions are Gaussian, this is
conveniently done by adding a term to the error equation quantifying the discrepancy between
the solution and the prior:

χ2
Bayes = (Rrs,calc.(λ) − Rrs,obs.(λ))

TS−1
R (Rrs,calc.(λ) − Rrs,obs.(λ)) + (x − xp)

TS−1
p (x − xp), (10)

where a superscript T denotes a matrix transpose. Diagonal elements of the noise covariance
matrix SR give the expected variance, σRrs(λ)

2, due to uncertainty in each Rrs(λ) observation, and
off-diagonal elements incorporate co-variances between uncertainties at different wavelengths,
which could, for example, be caused by upstream errors in an atmospheric correction term [29].
When off-diagonal components of SR are zero, the first term in Eq. (10) is equivalent to χ2

rel
(Eq. (9)), just expressed in matrix form. The second term in Eq. (10) is a penalty for deviations
of the fitted parameters x from the prior maximum likelihood xp, scaled to the prior covariance
matrix Sp.

A crucial step in any Bayesian implementation is to carefully define the prior distributions,
since these can play a leading role in determining the final output, and are what distinguish a
Bayesian inversion. The Bayesian-GIOP model is therefore separated into two steps. In the
first step, GIOP is run as in Section 2 to calculate the spectral shape parameters Sdg and η (i.e.,
from Eq. (7) and (8)) and estimate the most likely magnitude parameters aph(443), adg(443), and
bbp(555) by minimizing the relative error (Eq. (9)). The prior most likely values are then defined
as:

xp = [aph(443), adg(443), bbp(555), Sdg, η]. (11)

The uncertainty covariance matrix for these three parameters is calculated as J−1SRJ−1,T ,
where J is the Jacobian matrix. It is less apparent how to derive proper prior uncertainties for
shape parameters Sdg and η. Here we suggest using static standard deviations of 0.001 nm−1 and
0.1, respectively. The full prior uncertainty matrix is then:

Sp =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

[ J−1SRJ−1,T ] 0 0

0 0

0 0 0 0.0012 0

0 0 0 0 0.12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

A subsequent Bayesian implementation of GIOP is run for all five parameters, minimizing the
Bayesian error (Eq. (10)) using xp and Sp defined from the three-parameter standard GIOP run.
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4. Data

Data to ground-truth this approach are taken from the NASA bio-Optical Marine Algorithm
Dataset (NOMAD) [30,31], a collection of high-quality in situ optical data for use in algorithm
development. NOMAD data include measurements of Rrs(λ), aph(λ), and bbp(λ) at multiple
wavelengths that closely correspond to those measured by satellite data. For this study a
subset of 86 locations from NOMAD (Fig. 1) are used, where Rrs(λ), aph(λ), and bbp(λ) are all
measured at six wavelengths corresponding to those observed by the SeaWiFS satellite, and
where a corresponding measurement of Chl is taken either from chlorophyll fluorometry or
high-performance liquid chromatography (HPLC).

Fig. 1. Map of NOMAD sites used here (blue dots), with the example site considered in
more detail as a gold star.

For a spatial analysis, the GIOP methods outlined above are also applied to Level 2 satellite im-
agery obtained from the NASA Ocean Biology Processing Group (OBPG; https://oceancolor.gsfc.
nasa.gov). These images include Rrs(λ) and have been geo-located and atmospherically corrected
following standard NASA protocols. An overpass scene of the Gulf of Maine, off the northeastern
coast of the USA, from MODIS-Aqua on September 29, 2018 is used here.

5. Results

The fidelity of algorithms describing the spectral shape of CDOM and detrital absorption and
particulate backscatter can be tested using a subset of the NOMAD dataset with adg(λ) and bbp(λ)
at all six SeaWiFS wavelengths. Taking all wavelengths together, the two-parameter solution for
adg(λ) (Eq. (2)) resulted in misfits generally (87%) under 5%, and misfits for the two-parameter
solution for bbp(λ) (Eq. 2) were virtually always (97%) under 2%. Although these misfits both
had spectral shapes, suggesting biases in these functional forms, the comparatively low misfit
results point to the overall usefulness of this approach. The range of Sdg calculated from this
exercise (10–90th percentiles from 0.011–0.016 nm−1) supports the choice to use a dynamic,
rather than constant, Sdg value even in the 3-variable GIOP approach. However, in many cases
Rrs(λ) predicted from GIOP was significantly different from the observations (>25%), pointing
to limitations in this method (see Section 6).

GIOP was applied to the NOMAD sub-dataset described in Section 4 in (1) a 3-variable
configuration where the shape parameters Sdg and η are calculated and the three magnitude
parameters aph(443), adg(443), and bbp(555) are fit, which represents its current mode of operation
(Section 2), (2) a 5-variable configuration where the shape parameters Sdg and η are also fit using
the same model, and (3) Bayesian-GIOP where all five parameters are fit using priors derived from
the 3-variable configuration (Section 3). The retrieval of each of the five parameters—aph(443),
adg(443), bbp(555), Sdg, and η—can then be compared with measurements from the in situ dataset.
The fidelity of an SAA’s forward model and its parameterization for inversion can be partially
approximated by how closely the calculated Rrs(λ) align with the measured values. Typical
uncertainties for Rrs measurements are about 5% [32,33]. An SAA that appropriately retrieves

https://oceancolor.gsfc.nasa.gov
https://oceancolor.gsfc.nasa.gov
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Fig. 2. Rrs (black x’s) measured at a Southern California site (see gold star in Fig. 1).
Superimposed are the modeled results using measured values (green), 3-variable GIOP
(blue), 5-variable GIOP (orange), and Bayesian-GIOP (maroon).

IOPs should therefore ideally result in a final mean average error (MAE) of approximately the
same percentage. Here MAE is calculated as [34]:

MAE = exp

(︄∑︁N
i | log(Mi) − log(Oi)|

n

)︄
− 1, (13)

where Mi and Oi are a set of modeled results and observations, respectively. Algorithm results
with a MAE much higher than 5% indicate an incorrect representation of bio-optical and
geophysical representation of the model. Crucially, however, a MAE substantially lower than an
expected uncertainty of 5% is also not desirable, as this suggests that the model is fitting to noise
in the data.

An example result, from a station off the coast of Southern California (Fig. 1, gold star),
demonstrates expected and lower-than-expected error (Fig. 2). The modeled Rrs(λ) using
measured parameters (green line) has a 3.7% MAE with respect to the observations (black x’s),
which sets the expected error due to sensor noise, observational uncertainties, and modeling
inaccuracies (Table 1). The 3-variable GIOP implementation (blue line) has a very similar
error of 4.1%, but the 5-variable version (orange) has a MAE, 0.7%, that is much lower than
expected. This low error is not surprising, considering that an algorithm with five free parameters
fit to a dataset of six wavelengths only has one free variable, but does suggest that the model is
over-fitting to the data. The Bayesian implementation (maroon line) has a MAE similar to that of
the 3-variable model, of 3.5%.

Table 1. Example results for Southern California site (Fig. 1, gold star). Note that NOMAD
results are measured values, while other rows present the results of different model runs as

described in the text.

MAE aph(443); m−1 adg(443); m−1 bbp(555); m−1 Sdg; nm−1 η

NOMAD 3.7% 0.96 0.049 0.0029 0.014 1.40

3-var 4.1% 1.03 ± 0.09 0.041 ± 0.003 0.0027 ± 0.0001 0.016 1.34

5-var 0.7% 1.14 ± 0.16 0.007 ± 0.004 0.0014 ± 0.0004 0.052 ± 0.019 −0.39 ± 0.96

Bayes 3.5% 1.00 ± 0.07 0.043 ± 0.003 0.0026 ± 0.0001 0.015 ± 0.001 1.26 ± 0.08
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Fig. 3. Best-fit parameters and standard deviations for the 3-variable (blue), 5-variable
(orange), and Bayesian (maroon) approach. Observations are indicated by the black line.
Standard deviations for Sdg (D) and η (E) from the 3-variable approach are assumed to be
0.001 nm−1 and 0.1, respectively, as described in the text and in Eq. (12). Note that for
several of the 5-variable results the best-fit value lies outside the range shown.

That the 5-variable GIOP is fitting the noise is clearly seen in the best-fit retrievals for each
approach (Table 1; Fig. 3). The 5-variable approach, although resulting in a much better MAE,
has considerably worse IOP results, including with unrealistic values for the shape parameters
Sdg and η, and substantially higher uncertainty on each predicted IOP.

The Bayesian implementation improves on the predictions of three of the five variables
compared with the 3-variable implementation. The prediction of phytoplankton absorption
aph(443) decreased from 1.03 m−1 (3-var) to 1.00 m−1 (Bayes), compared with a measured value
of 0.96 m−1; the detrital and gelbstoff absorption adg(555) increased from 0.041 m−1 (3-var) to
0.043 m−1 (Bayes), compared with a measured value of 0.049 m−1; and the spectral slope of
detrital/gelbstoff absorption Sdg decreased from a calculated value of 0.016 nm−1 (3-var) to a fit
value of 0.015 nm−1 (Bayes), compared with a measured value of 0.014 nm−1. In this example
the Bayesian approach yielded a comparable prediction for the particulate backscatter bbp(555)
to the 3-variable model, but yielded a worse prediction for the spectral particulate backscattering
slope η, which decreased from a calculated value of 1.34 (3-var) to a fitted value of 1.26 (Bayes),
compared with a value derived from observations of 1.40.

The results from this single-station case study are broadly broadly consistent with the results
from the full sub-set of NOMAD data used here (Fig. 4). The average (± st. dev.) MAE is
4.8% (±2.9%) for the 3-variable, 1.0% (±0.8%) for the 5-variable, and 4.4% (±2.7%) for the
Bayesian retrievals. The 3-variable and Bayesian-GIOP versions are essentially equivalent for
the magnitude parameters aph(443), adg(443), and bbp(555) (A–C), with a slight low bias for
adg(443) and a high bias for bbp(555), with the 3-variable approach giving slightly better biases
for Sdg (D) and the Bayesian-GIOP approach providing less biased η estimates (E). The 5-variable
approach provides significantly worse results for all variables, with several results biased by more
than a factor of 3.

For each variable, the bias, MAE, and wins were calculated for each retrieval method (Table 2),
where

bias = exp
(︃∑︁n

i log(Mi) − log(Oi)

n

)︃
− 1 (14)
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Fig. 4. Best-fit parameters for the 3-variable (blue), 5-variable (orange), and Bayesian
(maroon) approach expressed as ratios from the observations. For each histogram, "<" and
">" refer to ratios of less than 1/3 and greater then 3, respectively.

Table 2. Statistics for full sub-set of NOMAD
data

variable metric 3-var 5-var Bayes

aph(443)
bias −9% +41% −5%

MAE 59% 55% 53%

wins 43% 32% 75%

adg(443)
bias −34% −54% −35%

MAE 59% 214% 60%

wins 79% 8% 63%

bbp(555)
bias +35% +87% +37%

MAE 43% 112% 44%

wins 74% 23% 53%

Sdg

bias +24% +132% +28%

MAE 25% 144% 28%

wins 83% 5% 61%

η

bias −19% +10% −16%

MAE 32% 104% 30%

wins 60% 22% 68%

and wins are calculated as the fraction of head-to-head contests where each method provides a
more accurate estimate (note that the total percentage in this row is 150%; see Ref. [34]). The
3-variable and Bayes retrievals consistently perform better, in virtually every metric, than the
5-variable retrieval. Between the two of them, the 3-variable approach performs better (smallest
bias and MAE and largest percentage of wins) for bbp(555) and Sdg, the Bayesian approach
performs better for aph(443) and η, and they are essentially equivalent for adg(443), with a slight
edge for the 3-variable approach in wins.

To illustrate the spatial information gained from the Bayesian approach, each of the three GIOP
implementations is applied to a scene from MODIS Aqua described in Section 4 (Fig. 5). The
Bayesian version does not substantially change the magnitude or spatial pattern of any of the
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Fig. 5. Example from a Level 2 MODIS-Aqua overpass scene for the Gulf of Maine. First
three rows give the GIOP retrieval of the five different parameters using the 3-variable,
5-variable, and Bayesian methods described in the text. Histograms on the bottom show the
distribution of each parameter within the kernel for the 3-variable (blue), 5-variable (orange),
and Bayesian (maroon) results.

magnitude variables aph(443), adg(443), or bbp(555) with respect to the 3-variable version. The
range of η is somewhat increased, with more variability at smaller scales, and the range of Sdg is
both substantially larger and at larger scales predicts opposite spatial trends, with, for example,
substantially larger values in the southeast region where the 3-variable version calculates slightly
a slightly smaller Sdg. The 5-variable version, by contrast, predicts on average significantly higher
aph(443), substantially lower average adg(443), an overall decrease in bbp(555), and a much larger
range of Sdg and η than either of the other algorithms. The over-fit 5-variable version also exhibits
considerably more spatial spikes in the data than the other versions.

6. Discussion

Use of the Bayesian, as opposed to the standard 3-variable SAA, primarily affects the two
shape parameters, Sdg and η, most notably leading to a broader range of variability in Sdg. This
expanded variability is supported by historical in situ measurements, which suggest variation of
Sdg from 0.012 to 0.017 nm−1 in the Gulf of Maine [35]. Bayesian-GIOP therefore provides a
potential for stronger testable hypotheses as to the variation in composition of both phytoplankton
communities (since η is retrieved rather than calculated) and CDOM than the 3-variable retrieval.

Higher spectral resolution may also be expected to increase the accuracy of all of the GIOP
approaches here. In particular, the 5-variable approach resulted in highly inaccurate retrievals of
the shape parameters Sdg and η, which were ill-constrained using only multispectral data. Large
inaccuracies in Sdg and η then propagate into retrievals of the associated magnitude parameters
adg(443) and bbp(555). The added spectral resolution of PACE, a satellite which will provide
2.5 nm spectral steps and 5 nm resolution throughout the wavelength range 340–890 nm [36]
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may lead to more highly constrained solutions for these shape parameters. However, even in this
context the Bayesian approach will be useful, as this method provides more flexible bounds to
allowable parameter values than many other algorithms, which typically apply either free (−∞ to
∞) or hard boundaries. Furthermore, the increase in spectral resolution will open the door for
additional fitted parameters such as multiple different types of CDOM [37] and phytoplankton
[38–41]. Past work has shown that a Bayesian implementation of GIOP shows skill in deciphering
multiple phytoplankton species [19]. In the future, an expanded GIOP framework encompassing
a wider number and range of optical constituents, perhaps varying with region or season, may
become both possible and necessary; such a framework would benefit from a Bayesian approach.

However, higher spectral resolution will not lead to more accurate IOP retrievals if the
underlying algorithm is inaccurate. In the sub-set of NOMAD data used here, we calculated
the expected Rrs(λ) using Eqs. (1–6) and compared to observed Rrs(λ). Nearly half (38/86, or
44%) of the modeled Rrs(λ) had greater than 25% MAE with respect to observations. This
is concerning, and points to additional work that needs to be done on the underlying optical
assumptions within any SAA configuration. For example, the assumption that a single factor
controls the spectral slope of CDOM [42,43] or particulate backscatter [44] may cause significant
retrieval errors. An increase in spectral resolution from observations, such as will be possible
from PACE, may allow for more realistic spectral shapes for both adg(λ) and bbp(λ).

7. Conclusions

This manuscript demonstrates a method to use prior knowledge of key optical parameters as
constraints in a Bayesian implementation of a common remote sensing inversion algorithm,
GIOP. The Bayesian approach allows elements related to the spectral shape of absorption and
backscattering IOPs to be retrieved as part of the fitted algorithm, rather than calculated according
to empirical formulae. Use of Bayesian-GIOP therefore alleviates a current issue with the GIOP
algorithm, which is that in the standard formulation fitting shape parameters results in retrieved
values that are either nonsensical or are completely determined by specified boundary constraints,
which currently serve as a cruder version of a Bayesian prior. This approach is also expected to
generalize well to future GIOP-like algorithms involving a larger number of IOPs, which will
dramatically improve the fidelity of data products from future, hyperspectral missions.
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